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The Circuit Size Hierarchy (CSHa
b ) states that if a > b ≥ 1 then the set of Boolean functions on

n variables computed by circuits of size na is strictly larger than the set of functions computed by
circuits of size nb. This result, which is a cornerstone of circuit complexity theory, follows from the
non-constructive proof of the existence of functions of large circuit complexity obtained by Shannon
in 1949 [Sha49].

Are there more “constructive” proofs of the Circuit Size Hierarchy? Can we quantify this? Moti-
vated by these questions, we investigate the provability of CSHa

b in theories of Bounded Arithmetic,
which are fragments of Peano’s Arithmetic that capture the notion of polynomial-time reasoning or
incorporate induction principles corresponding to various levels of the polynomial-time hierarchy
(see [Bus97, Kra95]).

Specifically, we are interested in identifying the weakest theory capable of establishing this
hierarchy and related results and we present a tight connection between the computational and
proof-theoretic perspectives. Among other contributions, we establish the following results:

(i) Given any b > 1, CSHa
b is provable in Buss’s theory T2

2 for a > b+ 1.

(ii) In contrast, if there are constants a > b > 1 such that CSHa
b is provable in the theory T1

2,
then there is a constant ε > 0 such that PNP requires non-uniform circuits of size n1+ε.

(iii) Similarly, if there are constants a > b > 1 such that CSHa
b is provable in the theory PV1, then

there is a constant ε > 0 such that P requires non-uniform circuits of size n1+ε.

In other words, an improved upper bound on the proof complexity of CSHa
b would lead to new lower

bounds in complexity theory.
We complement these results with a proof of the Formula Size Hierarchy (FSHa

b ) in PV1 with
parameters a > 2 and b = 3/2. This is in contrast with typical formalizations of complexity lower
bounds in bounded arithmetic, which require APC1 or stronger theories and are not known to hold
even in T1

2.
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