Provability of the Circuit Size Hierarchy and Its Consequences Dimitrios Tsintsilidas

The Circuit Size Hierarchy (CSH_b^a) states that if $a > b \ge 1$ then the set of Boolean functions on n variables computed by circuits of size n^a is strictly larger than the set of functions computed by circuits of size n^b . This result, which is a cornerstone of circuit complexity theory, follows from the non-constructive proof of the existence of functions of large circuit complexity obtained by Shannon in 1949 [Sha49].

Are there more "constructive" proofs of the Circuit Size Hierarchy? Can we quantify this? Motivated by these questions, we investigate the provability of CSH_b^a in theories of Bounded Arithmetic, which are fragments of Peano's Arithmetic that capture the notion of polynomial-time reasoning or incorporate induction principles corresponding to various levels of the polynomial-time hierarchy (see [Bus97, Kra95]).

Specifically, we are interested in identifying the weakest theory capable of establishing this hierarchy and related results and we present a tight connection between the computational and proof-theoretic perspectives. Among other contributions, we establish the following results:

- (i) Given any b > 1, CSH_b^a is provable in Buss's theory T_2^2 for a > b + 1.
- (*ii*) In contrast, if there are constants a > b > 1 such that CSH_b^a is provable in the theory T_2^1 , then there is a constant $\varepsilon > 0$ such that P^{NP} requires non-uniform circuits of size $n^{1+\varepsilon}$.
- (*iii*) Similarly, if there are constants a > b > 1 such that CSH_b^a is provable in the theory PV_1 , then there is a constant $\varepsilon > 0$ such that P requires non-uniform circuits of size $n^{1+\varepsilon}$.

In other words, an improved *upper bound* on the proof complexity of CSH^a_b would lead to new *lower* bounds in complexity theory.

We complement these results with a proof of the Formula Size Hierarchy (FSH_b^a) in PV_1 with parameters a > 2 and b = 3/2. This is in contrast with typical formalizations of complexity lower bounds in bounded arithmetic, which require APC_1 or stronger theories and are not known to hold even in T_2^1 .

This is joint work with Marco Carmosino, Valentine Kabanets, Antonina Kolokolova and Igor C. Oliveira.

- [Bus97] Samuel R. Buss. Bounded arithmetic and propositional proof complexity. In Logic of Computation, pages 67–121. Springer Berlin Heidelberg, 1997. 1
- [Kra95] Jan Krajíček. Bounded Arithmetic, Propositional Logic, and Complexity Theory. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1995. 1
- [Sha49] Claude E. Shannon. The synthesis of two-terminal switching circuits. The Bell System Technical Journal, 28(1):59–98, 1949. 1