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Finitism, coming in various shades and degrees of commitment, is of both
philosophical and computational interest. Hilbert proposed to view primitive-
recursive arithmetic (PRA) as safely finitistic (though not necessarily exhaus-
tive) [1, 2]. This focus on recurrence led some to contend that very broad uses
of induction are also finitistic [3, 10, 11].

William Tait argued against such extensions, pointing out their impred-
icative nature [7, 8, 6]. However, the recurrence schema iteself has a grain of
imperdicativity when refering to functions over N as completed totalities, and
even the inductive delineation of N is non-finitistic as it defines N before ad-
mitting each of its elements. It seems desirable to construe finitism bottom-up,
rather than as a top-down restriction of mathematical practice as in [4, 9].

We take as building blocks finite partial-functions over an abstract set of
“atoms”. Our unique basic operation is updates f(~t) := q (f a function, ~t, q

closed-terms). Creation and deletion of denoted values are special cases. Every
inductive data-set, such as naturals, strings, lists and trees, is representable as
a cluster of finite-functions, first-order definable given finiteness.

Elementary formulas are generated from equations t ≃ q between terms
(variables allows) using connectives and quantifiers over atoms. Concrete for-
mulas are of the form ∃~f ϕ with ϕ elementary. Concrete formulas are fini-
tistically meaningful, while the exsitential quantification enables to describe
processses without naming them.

Our Concrete Theory of Finite structures (CTFS) has, besides four trivial
schemas, an Induction Rule: if it is provable that ϕ[f ] implies ϕ[g] for any
update g of f , then ϕ[∅] → ϕ[h] for any function h . This principle can be
formulated in terms of concrete formulas only, contrary to the corresponding
induction schema!
Main Theorem: TCFS is mutually interpretable with PRA. This vindicates
Tait’s Thesis that identifies finitism with PRA.

To prove that PRA is interpretable in CTFS we: (1) interpret equality as
isomorphism; (2) show that the every PR function is interpreted by a provable
function of CFTS; and (3) show that every instance of induction on equations
(which by Parson’s Theorem [5] is derived by the Induction Rule for existential
formulas) is interpreted by the induction rule of CFTS for concrete formulas.

Conversely, we interpret CFTS in PRA by arithmetizing CTFS as a deduc-
tive system.
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