MODEL-THEORETIC K_1 OF FREE MODULES OVER PIDS

SOURAYAN BANERJEE (JOINT WORK WITH AMIT KUBER)

Abstract

For a first-order structure M over a language \mathcal{L} , Krajiček and Scanlon [KS00] defined the model-theoretic Grothendieck ring, denoted $K_0(M)$ -such a ring classifies cut-and-paste equivalence classes of definable subsets (with parameters) of finite powers of M up to definable bijections. Let $\mathcal{S}(M)$ denote the groupoid whose objects are all definable subsets of M^n for $n \geq 1$, and whose morphisms are definable bijections between them. In fact, $(\mathcal{S}(M), \sqcup, \emptyset, \times, \{*\})$ is a symmetric monoidal groupoid with a pairing, where \sqcup denotes disjoint union and \times is the Cartesian product, and $\{*\}$ is a singleton. Given a (skeletally) small symmetric monoidal groupoid \mathcal{S} , Quillen gave a functorial construction of the abelian groups $(K_n(\mathcal{S}))_{n\geq 0}$, known as the K-theory of \mathcal{S} , which seek to classify different aspects of its objects and morphisms. Following Quillen's construction, we define the *model-theoretic K-theory* of the first order structure M by $K_n(M) := K_n(\mathcal{S}(M))$ for $n \geq 0$. In [Kub15] the model-theoretic Grothendieck rings of modules were computed and shown to be non-trivial for non-zero modules.

Bass introduced the algebraic K_1 -group of a ring R, denoted $K_1^{alg}(R)$, as the direct limit of the abelianizations of the automorphism groups of finitely generated projective R-modules as their size grows larger. In other words, $K_1^{alg}(R) \cong \lim_{m \in \mathbb{N}} (GL_n(R))^{ab}$. In this talk, we provide a recipe to compute the model-theoretic group $K_1(M_R)$, where M_R is a free module over a PID R, subject to the knowledge of the general linear groups $GL_n(R)$ for $n \ge 1$ [BK24], and show a surprising connection with algebraic K-theory that when R is a PID then $K_1^{alg}(R)$ naturally embeds into $K_1(R_R)$ -such a connection does not hold for K_0 .

We compute $K_1(M_R)$, where M_R is a free module over a large class of Euclidean domains that excludes the ring \mathbb{Z} of integers, and show that $K_1(M_R) \cong K_1(R_R)$. The following table shows some concrete computations.

PID R	$K_1^{alg}(R)$	$K_1(R_R)$
Field F , char $F = 0$	F^{\times}	$\mathbb{Z}_2 \oplus \bigoplus_{i=1}^{\infty} \left((GL_i(F))^{ab} \oplus \mathbb{Z}_2 \right)$
Field $F_{2^n}, n > 1$	\mathbb{Z}_{2^n-1}	$\mathbb{Z}_2\oplusigoplus_{n=1}^\infty(\mathbb{Z}_{2^k-1}\oplus\mathbb{Z}_2)$
Field $F_{p^n}, n \ge 1, p$ prime	\mathbb{Z}_{p^n-1}	$\mathbb{Z}_2 \oplus \bigoplus_{n=1}^{\infty} (\mathbb{Z}_{p^k-1} \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2)$
Polynomial ring $F[X]$, char $F = 0$	F^{\times}	$\mathbb{Z}_2 \oplus \bigoplus_{i=1}^{\infty} \left((GL_i(F))^{ab} \oplus \mathbb{Z}_2 \right)$
Z	\mathbb{Z}_2	$\bigoplus_{i=0}^{\infty} \mathbb{Z}_2$

References

- [KS00] Jan Krajíček and Thomas Scanlon. "Combinatorics with definable sets: Euler characteristics and Grothendieck rings". In: Bull. Symbolic Logic 6.3 (2000), pp. 311–330. ISSN: 1079-8986,1943-5894.
 DOI: 10.2307/421058. URL: https://doi.org/10.2307/421058.
- [Kub15] Amit Kuber. "Grothendieck rings of theories of modules". In: Ann. Pure Appl. Logic 166.3 (2015), pp. 369–407. ISSN: 0168-0072,1873-2461. DOI: 10.1016/j.apal.2014.11.011. URL: https: //doi.org/10.1016/j.apal.2014.11.011.
- [BK24] Sourayan Banerjee and Amit Kuber. Model-theoretic K₁ of free modules over PIDs. 2024. arXiv: 2407.13624 [math.L0]. URL: https://arxiv.org/abs/2407.13624.

DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY, KANPUR-208016, UTTAR PRADESH, INDIA Email address: sourayanb@iitk.ac.in

Date: August 9, 2024.