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Kleene algebras are a classical object in theoretical computer science, going
back to works of Kleene and Kozen [3, 4]. A Kleene algebra is a structure
(K; +, ·, ∗, 0, 1), where (K; +, ·, 0, 1) is an idempotent semiring and a∗ is the
least fixpoint of x 7→ 1 + a · x and x 7→ 1 + x · a simultaneously. Each Kleene
algebra, being a semilattice (“+” is join), enjoys a natural partial order: a ⪯ b
iff a+ b = b. An action algebra [12, 5], or residuated Kleene algebra, is a Kleene
algebra with residuals, \ and /, where a ⪯ c / b ⇐⇒ a · b ⪯ c ⇐⇒ b ⪯ a \ c.
Specific subclasses of Kleene and action algebras are formed by so-called ∗-con-
tinuous ones, delimited by the following infinitary condition for Kleene star:
b · a∗ · c = sup{b · an · c | n ≥ 0}.

The complexity landscape for theories of Kleene algebras is depicted in [6].
Namely, while their equational theory is decidable (PSPACE-complete), both
in the general and in the ∗-continuous case, already the Horn theory (reason-
ing from finite sets of hypotheses) is Σ0

1-complete in the general case and Π1
1-

complete in the ∗-continuous case. For hypotheses without Kleene star, the
latter is lowered to Π0

2-completeness. For action algebras, already the equa-
tional theory is undecidable, being Π0

1-complete in the ∗-continuous case [2, 11]
and Σ0

1-complete in the general one [7].
In this talk, we present three recent results by the author, concerning com-

plexity for Kleene and action algebras which are commutative (i.e., a · b = b · a
for any a, b ∈ K) or partially commutative.

• The Horn theory of commutative ∗-continuous Kleene algebras is Π1
1-

complete. The fragment of this Horn theory with ∗-free hypotheses is
Π0

2-complete. [10]

• The equational theory of all commutative action algebras and that of all
∗-continuous commutative action algebras are, respectively, Σ0

1- and Π0
1-

complete. [8]

• Reasoning from commutativity conditions (i.e., a finite set of hypotheses of
the form x ·y = y ·x) on the class of all Kleene algebras is Σ0

1-complete. [9]
Independently, undecidability was also proved by Azevedo de Amorim et
al. [1]. For the ∗-continuous case, Π0

1-completeness of this problem was
previously known [6].
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