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FLUTED LOGIC
The fluted fragment (denoted FL) is a fragment of first-order logic

(denoted FO) in which, roughly put, variables appear in predi-

cates following the order in which they were quantified. For il-

lustrative purposes, we translate the sentence “Every conductor

nominates their favorite soloist to play at every concert” into the lan-

guage described above as follows: ∀𝑥1 [𝑐𝑜𝑛𝑑 (𝑥1) → ∃𝑥2⟨𝑠𝑜𝑙𝑜 (𝑥2) ∧
𝑓 𝑎𝑣 (𝑥1, 𝑥2) ∧ ∀𝑥3 (𝑐𝑜𝑛𝑐 (𝑥3) → 𝑛𝑜𝑚(𝑥1, 𝑥2, 𝑥3))⟩] . More formally,

the key rule of flutedness is as follows. If 𝑥1, . . . , 𝑥ℓ are quantified

(in order) leading up to some atom 𝛼 , then 𝛼 ≡ 𝑝 (𝑥𝑖 , . . . , 𝑥ℓ ) for
some 1 ≤ 𝑖 ≤ ℓ ; that is to say, 𝛼 can only feature an ordered suffix

of 𝑥1, . . . , 𝑥ℓ as arguments. Because of this restriction sentences

axiomatising transitivity, symmetry and reflexivity are not in FL.

The fluted fragment [15] is a member of ordered logics – a fam-

ily of decidable (in terms of satisfiability) fragments of first-order

logic which also includes the ordered [9, 10], forward [2] and (the

most recent addition) adjacent [4] fragments. In the sequel we will

disregard the ordered and forward fragments seeing that the fluted

fragment, as it turns out, is at least as expressive as both of them [3].

The fluted fragment is of particular interest as it is robustly

decidable in terms of satisfiability even in the presence of extensions

such as counting quantifiers ∃[≥𝑚]𝑥 .𝜑 which state “the number of

elements satisfying 𝜑 is𝑚 or greater” [14] and periodic counting
quantifiers ∃[𝑚+𝑝 ]𝑥 .𝜑 stating “the number of elements satisfying 𝜑

is𝑚, or𝑚 + 𝑝 , or𝑚 + 2𝑝 , or . . . ” [11]. (Do note that the latter is not

FO-expressable). There is a limit, however, of how far one can go

in terms of extensions. A notable undecidable augmentation is that

of a Härtig quantifier 𝐼 (𝑥,𝑦) (𝜑,𝜓 ) – a (non-FO) extension which

allows comparison of cardinalities of sets defined by 𝜑 and𝜓 .

No matter which decidable extension one picks, the high-level

proof idea (for decidability of satisfiability) is the same: given a

sentence in the language exploit the ordered nature of flutedness

and reduce the number of variables until an “easy enough” base case

is reached. This variable reduction procedure will be the key focus

throughout the talk. We will also establish a new result from [11]:

when one is concerned with fluted languages, only models in which

elements behave (in a sense that will be made clear in the talk)

homogenously need be considered. This, as it will become apparent,

will greatly reduce the complexity of decidability arguments.

THE ADJACENT FRAGMENT
Suppose 𝛼 is an atom in a context where variables 𝑥1, . . . , 𝑥ℓ are

quantified in order. We say that 𝛼 is adjacent if it takes the form

𝑝 (𝑥𝑖1 , . . . , 𝑥𝑖𝑘 ), where |𝑖 𝑗 − 𝑖 𝑗+1 | ≤ 1 for 1 ≤ 𝑗 < 𝑘 and 1 ≤ 𝑖 𝑗 ≤ ℓ .

That is to say, subsequent arguments in 𝛼 are neighboring elements

of the sequence 𝑥1, . . . , 𝑥ℓ . We call the language with the adjacency

condition imposed the adjacent fragment (denoted AF ). Clearly,

FL ⊆ AF . As opposed to the fluted fragment, symmetry and

reflexivity (amongst other properties) is axiomatisable in the new

language, thus making the adjacent fragment more expressive. Note

that the adjacent fragment also subsumes (up to logical equivalence)

the two-variable fragment of first-order logic FO2
.

What is gained in expressive power by generalising the fluted-

ness condition, however, is lost in terms of decidability. Whilst in

the presence of no extensions the satisfiability problem is decidable

using a variable reduction technique similar to that as for the fluted

fragment [4], the homogenous model property is lost. Undecid-

ability of satisfiability follows from [11] for the adjacent fragment

with (periodic) counting quantifiers. It is currently open whether

the satisfiability problem for AF 3
with counting quantifiers is

decidable. The finite variant of the satisfiability problem for AF 3

with counting quantifiers, however, is Σ0
1
-complete [11]. In the talk

we will discuss what makes the problem ‘tricky’ and undecidable

when an additional variable is permitted. By doing so, we will give

intuition as to why the variable reduction procedure fails.

Table 1 provides the currently known upper and/or lower bounds

for the satisfiability problems of ordered languages discussed.

FO1 FO2 AF 3 AF ℓ FL3 FLℓ

no extensions NP-c [folklore] NExp-c [8] NExp-c [4] (ℓ − 2)-NExp [4] NExp-c [15] (ℓ − 2)-NExp [15]
“=” predicate NP-c [folklore] NExp-c [8] 2-NExp [5] (ℓ − 1)-NExp [5] 2-NExp [14] (ℓ − 1)-NExp [14]
∃[≥𝑚]𝑥 .𝜑 NP-c [12] NExp-c [13] ??? Π0

1
-c [11] 2-NExp [14] (ℓ − 1)-NExp [14]

∃[𝑚+𝑝 ]𝑥 .𝜑 NP-c [1] 2-NExp [6] Σ0
1
-h [11] Σ1

1
-c [11] 2-NExp [11] (ℓ − 1)-NExp [11]

𝐼 (𝑥,𝑦) (𝜑,𝜓 ) NP-c [1] Σ1
1
-h [7] Σ1

1
-h [7] Σ1

1
-h [7] Σ1

1
-h [7] Σ1

1
-h [7]

Table 1: Complexity and (un)decidability of the satisfiability problem for ordered languages (in the top row) under various extensions (on

the left-most column). All complexity classes are in regard to time. C-c (resp. -h) stands for complete (resp. hard). In all cases ℓ ≥ 4.
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