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Abstract

What is a “collection”? All too readily one assumes that it ought to
form a set, or at least a class, but of course this presupposes a given set
theory (classical or otherwise). If instead we describe the elements of a
collection as the models of a logical theory, then a single description can
serve to describe the collection in a range of set theories.

A hugely important example is that of topological spaces. For some
time now, constructive mathematics has tried to teach us that these are
best approached not point-set, with a given set of points, but “point-
free”, with a different structure such as a locale [Joh82] or a formal topol-
ogy [Sam87]. Then we have (Joyal and Tierney [JT84]) that spaces in
the internal maths of a topos of sheaves are equivalent to bundles over
the corresponding space. This is an excellent result that has no good
counterpart in point-set topology, and it leads to a principle that we can
rigorously understand bundles as continuously indexed families of spaces,
provided we reason point-free and constructively.

Using those structures directly is unintuitive and lacks transparency.
However, they turn out to be ways to present logical theories, and tech-
niques have gradually become available for reasoning with them transpar-
ently as collections of models — this has been the motivation for much
of my own work (eg [Vic99, Vic07, Vic22]). The geometric logic used
(see [Joh02, D1.1]) is constructive. Moreover, its connectives are restricted
to conjunctions and (possibly infinitary) disjunctions, which correspond
to intersections and unions used in axiomatizing open sets of topology.

I shall give a taster of the principles and techniques by which this
approach has recently started to be applied to real analysis. In Ming
Ng’s thesis he defined real exponentiation and logarithms (see [NV22]),
and subsequently [Vic23] I have given an account of the Fundamental
Theorem of Calculus, exploiting earlier results on integration [Vic08] and
differentiation [Vic09].
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